1197. Minimum Knight Moves

Problem Statement


use std::collections::VecDeque;

impl Solution {
pub fn min_knight_moves(x: i32, y: i32) -> i32 {
let (dx, dy) : ([i32; 8], [i32; 8]) = (
[-2, -2, -1, -1, 1, 1, 2, 2],
[-1, 1, -2, 2, -2, 2, -1, 1]);
let mut grid = [[-1; 888] ; 888];
let (ax, ay) = (x.abs() as usize, y.abs() as usize);
grid[400][400] = 0;

let mut q : VecDeque<(usize, usize)> = VecDeque::new();
q.push_back((0, 0));
while !q.is_empty() {
let (cx, cy) = q.pop_front().unwrap();
if cx == ax && cy == ay {
return grid[cx + 400][cy + 400];
}

for k in 0..8 {
let (xx, yy) = (cx as i32 + dx[k] , cy as i32 + dy[k]);
let (nx, ny) = ((xx + 400) as usize, (yy + 400) as usize);
if grid[nx][ny] != -1 {
continue;
}
grid[nx][ny] = grid[cx + 400][cy + 400] + 1;
if xx as usize == ax && yy as usize == ay {
return grid[nx][ny];
}
q.push_back((xx as usize, yy as usize));
}
}

return -1;
}
}

1218. Longest Arithmetic Subsequence of Given Difference

Problem Statement


use std::collections::HashMap;
use std::cmp;

impl Solution {
pub fn longest_subsequence(arr: Vec<i32>, difference: i32) -> i32 {
let (mut ans, mut map) = (0, HashMap::new());
for i in arr {
let val = cmp::max(*map.entry(i).or_insert(0),
*map.entry(i - difference).or_insert(0) + 1);
map.insert(i, val);
ans = cmp::max(ans, *map.entry(i).or_insert(0));
}
return ans;
}
}

LeetCode 1219. Path with Maximum Gold

Problem Statement

BFS.


use std::collections::VecDeque;
use std::cmp;

impl Solution {
pub fn get_maximum_gold(grid: Vec<Vec<i32>>) -> i32 {
let (m, n, mut ans, mut id) = (grid.len(), grid[0].len(), 0, 0);
let (dx, dy) : ([i32; 4], [i32; 4]) = ([0, 0, 1, -1], [1, -1, 0, 0]);
let mut visited = vec![vec![0; n]; m];
let mut q = VecDeque::new();

for i in 0..m {
for j in 0..n {
if grid[i][j] == 0 {
continue;
}
id += 1;
visited[i][j] = 1 << id;
q.push_back((i, j, grid[i][j], visited[i][j]));
}
}

while !q.is_empty() {
let cur = q.pop_front().unwrap();
let (x, y, sum, state) = (cur.0 as i32, cur.1 as i32, cur.2, cur.3);
ans = cmp::max(ans, sum);
for i in 0..4 {
let (xx, yy) = (x + dx[i], y + dy[i]);
if xx < 0 || xx == m as i32 || yy < 0 || yy == n as i32 ||
grid[xx as usize][yy as usize] == 0 || (state & visited[xx as usize][yy as usize] != 0) {
continue;
}
let (nx, ny) = (xx as usize, yy as usize);
q.push_back((nx, ny, sum + grid[nx][ny], state | visited[nx][ny]));
}
}

return ans;
}
}