USACO 5.4 Canada Tour

For every pair of cities (i,j) find maximum total length of two paths. One path starts at city 1 and ends in city i, the other path starts from city 1 and ends in city j. Both path have no common cities except the start city 1 and the end city N. First path will reach city N, and the result will be the maximum value of the other path ending at j where 1 <= j <= N.

#include <vector>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <string>

using namespace std;

int N, V;
vector<vector<int>> dp;
vector<vector<bool>> flight;
unordered_map<string, int> cities;

int main() {
ifstream fin("tour.in");
ofstream fout("tour.out");

fin >> N >> V;
dp = vector<vector<int>>(N + 1, vector<int>(N + 1));
flight = vector<vector<bool>>(N + 1, vector<bool>(N + 1, false));

string city;
for (int i = 1; i <= N; ++i) {
fin >> city;
cities[city] = i;
}

string from, to;
for (int i = 0; i < V; ++i) {
fin >> from >> to;
flight[cities[from]][cities[to]] = true;
flight[cities[to]][cities[from]] = true;
}

dp[1][1] = 1;
for (int i = 1; i <= N; ++i) {
for (int j = i + 1; j <= N; ++j) {
for (int k = 1; k < j; ++k) {
if (dp[i][k] && flight[k][j]) {
dp[i][j] = std::max(dp[i][k] + 1, dp[i][j]);
}
dp[j][i] = dp[i][j];
}
}
}

int ans = 1;
for (int i = 1; i <= N; ++i) {
if (!flight[i][N]) continue;
ans = std::max(ans, dp[i][N]);
}

cout << ans << endl;
fout << ans << endl;
}